

JMIETI, Radaur

Lesson Planning of Basic Electrical Engineering Deptt. Applied Science Semester w.e.f Jan, 2019

Name of Teacher : Richa Gaur

Designation : Assistant Professor

Subject with code : ES-101

Objective of Course :

1.To study the various theorems & analysis techniques to analyse the DC steady state circuits.

- **2.** To understand the AC fundamentals & to analyse the AC circuits.
- ${f 3}$.To perform various test on single phase transformer and to study the polyphase system to measure power.
- **4.** To understand the basic concepts of AC & DC electrical machines and to study the electrical equipment installations.

Week & Month	Topic / Chapter Covered	Academic Activity	Test/Assignment
Jan		Lecture	
	Ohm's Law , Junction ,node		
Jan	Circuit elements classification linear & Nonlinear	Lecture	
Jan	Active & Passive , lumped & distributes	Lecture	Assignment
Jan	KVL, KCL,	Lecture	
Jan	Loop and Node –voltage analysis of resistive circuit	Lecture	Test
Jan	Star delta transformation for resistors .Network Theorems Superposition,	Lecture	
Jan	Thevenin's Norton's and Maximum power transfer theorems in a resistive network	Lecture	Test
Jan	Mathematical Representation of various wave function.	Lecture	Assignment
Jan	Polar & rectangular form of representation of impedances and phasor quantities	Lecture	
Jan	Addition & subtraction of two or more phasor sinusoidal quantities using component resolution methods	Lecture	

Feb	RMS and average values of various	Lecture	Assignment
	waveforms.	T .	
Feb	Behavior of various components fed by A.C	Lecture	
Feb	Steady state response of pure R, Pure L,	Lecture	
Feb	Pure C, RL, RC,RLC Series with Waveforms of	Lecture	Test
reu	instantaneous voltage	Lecture	Test
Feb	Current & power of simultaneous time	Lecture	
	axis scale and corresponding phasor		
	diagrams		
Feb	Power factor , Active , reactive &	Lecture	
	apparent power		
Feb	Frequency Response of Series & parallel RLC ckts.	Lecture	Assignment
Feb	Including resonance, Q factor , cut off	Lecture	
	frequency & bandwidth		
Feb	Generation of alternating emf	Lecture	
Feb	Generation alternating 3 – phase emf 3-	Lecture	
	phase balanced circuits,		
March	voltage and current relation in star and	Lecture	Test
	delta connections		
March	Measurement of 3-phase power by two	Lecture	Test
	wattmeter method for various types of		
	star & delta connected balanced loads		
March	Concept of magnetic Circuits, relation	Lecture	
	between MMF & Reluctance		
March	Hysteresis & Eddy current phenomenon,	Lecture	
March	Principle , construction &emf equation	Lecture	
	phasor diagram at ideal		
March	No load and on load conditions . Losses	Lecture	Test
	& efficiency		
March	Regulation , OC & SC test , Equivalent	Lecture	Test
	circuit, concept of auto transformer		
March	Construction and working of DC	Lecture	Assignment
	Machine with Commutator action		
March	Speed control of dc shunt motor	Lecture	
March	Generation of rotating magnetic field	Lecture	
April	Constructions and working of a three	Lecture	Assignment
	phase induction motor		
April	Significance of torque –slip	Lecture	
	characteristic.		
April	Basics of single –phase induction motor	Lecture	Test
April	Capacitor start capacitor run single –	Lecture	Test
	phase induction motor working		
April	Basic construction and working of	Lecture	
	synchronous generator and motor		
April	Switch Fuse Unit (SFU)	Lecture	

April	MCB,ELCB	Lecture	Assignment
April	MCCB, Types of wires and cables	Lecture	Assignmnet
April	Earthing	Lecture	

Outcome of Course:

- **1**. Capable to analyse the steady state AC & DC circuits.
- **2**. Capable to deal with introductory balance 3-phase system analysis& single-phase transformer.
- **3**. Familiar with basics of Electrical motors & generators and Electrical installations.

(Sign. of HOD)

(Sign. of Teacher Concerned with date)